Sunday, April 9, 2017

Huffman encoding and decoding example in java: code and output

Code:

// C program for Huffman Coding
#include <stdio.h>
#include <stdlib.h>
// This constant can be avoided by explicitly calculating height of Huffman Tree
#define MAX_TREE_HT 100
// A Huffman tree node
struct MinHeapNode
{
                char data; // One of the input characters
                unsigned freq; // Frequency of the character
                struct MinHeapNode *left, *right; // Left and right child of this node
};

// A Min Heap: Collection of min heap (or Hufmman tree) nodes
struct MinHeap
{
                unsigned size; // Current size of min heap
                unsigned capacity; // capacity of min heap
                struct MinHeapNode **array; // Attay of minheap node pointers
};

// A utility function allocate a new min heap node with given character
// and frequency of the character
struct MinHeapNode* newNode(char data, unsigned freq)
{
                struct MinHeapNode* temp =
                                (struct MinHeapNode*) malloc(sizeof(struct MinHeapNode));
                temp->left = temp->right = NULL;
                temp->data = data;
                temp->freq = freq;
                return temp;
}

// A utility function to create a min heap of given capacity
struct MinHeap* createMinHeap(unsigned capacity)
{
                struct MinHeap* minHeap =
                                (struct MinHeap*) malloc(sizeof(struct MinHeap));
                minHeap->size = 0; // current size is 0
                minHeap->capacity = capacity;
                minHeap->array =
                (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*));
                return minHeap;
}

// A utility function to swap two min heap nodes
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b)
{
                struct MinHeapNode* t = *a;
                *a = *b;
                *b = t;
}

// The standard minHeapify function.
void minHeapify(struct MinHeap* minHeap, int idx)
{
                int smallest = idx;
                int left = 2 * idx + 1;
                int right = 2 * idx + 2;

                if (left < minHeap->size &&
                                minHeap->array[left]->freq < minHeap->array[smallest]->freq)
                smallest = left;

                if (right < minHeap->size &&
                                minHeap->array[right]->freq < minHeap->array[smallest]->freq)
                smallest = right;

                if (smallest != idx)
                {
                                swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);
                                minHeapify(minHeap, smallest);
                }
}

// A utility function to check if size of heap is 1 or not
int isSizeOne(struct MinHeap* minHeap)
{
                return (minHeap->size == 1);
}

// A standard function to extract minimum value node from heap
struct MinHeapNode* extractMin(struct MinHeap* minHeap)
{
                struct MinHeapNode* temp = minHeap->array[0];
                minHeap->array[0] = minHeap->array[minHeap->size - 1];
                --minHeap->size;
                minHeapify(minHeap, 0);
                return temp;
}

// A utility function to insert a new node to Min Heap
void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode)
{
                ++minHeap->size;
                int i = minHeap->size - 1;
                while (i && minHeapNode->freq < minHeap->array[(i - 1)/2]->freq)
                {
                                minHeap->array[i] = minHeap->array[(i - 1)/2];
                                i = (i - 1)/2;
                }
                minHeap->array[i] = minHeapNode;
}

// A standard funvtion to build min heap
void buildMinHeap(struct MinHeap* minHeap)
{
                int n = minHeap->size - 1;
                int i;
                for (i = (n - 1) / 2; i >= 0; --i)
                                minHeapify(minHeap, i);
}

// A utility function to print an array of size n
void printArr(int arr[], int n)
{
                int i;
                for (i = 0; i < n; ++i)
                                printf("%d", arr[i]);
                printf("\n");
}

// Utility function to check if this node is leaf
int isLeaf(struct MinHeapNode* root)
{
                return !(root->left) && !(root->right) ;
}

// Creates a min heap of capacity equal to size and inserts all character of
// data[] in min heap. Initially size of min heap is equal to capacity
struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size)
{
                struct MinHeap* minHeap = createMinHeap(size);
                for (int i = 0; i < size; ++i)
                                minHeap->array[i] = newNode(data[i], freq[i]);
                minHeap->size = size;
                buildMinHeap(minHeap);
                return minHeap;
}

// The main function that builds Huffman tree
struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size)
{
                struct MinHeapNode *left, *right, *top;

                // Step 1: Create a min heap of capacity equal to size. Initially, there are
                // modes equal to size.
                struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size);

                // Iterate while size of heap doesn't become 1
                while (!isSizeOne(minHeap))
                {
                                // Step 2: Extract the two minimum freq items from min heap
                                left = extractMin(minHeap);
                                right = extractMin(minHeap);

                                // Step 3: Create a new internal node with frequency equal to the
                                // sum of the two nodes frequencies. Make the two extracted node as
                                // left and right children of this new node. Add this node to the min heap
                                // '$' is a special value for internal nodes, not used
                                top = newNode('$', left->freq + right->freq);
                                top->left = left;
                                top->right = right;
                                insertMinHeap(minHeap, top);
                }

                // Step 4: The remaining node is the root node and the tree is complete.
                return extractMin(minHeap);
}

// Prints huffman codes from the root of Huffman Tree. It uses arr[] to
// store codes
void printCodes(struct MinHeapNode* root, int arr[], int top)
{
                // Assign 0 to left edge and recur
                if (root->left)
                {
                                arr[top] = 0;
                                printCodes(root->left, arr, top + 1);
                }

                // Assign 1 to right edge and recur
                if (root->right)
                {
                                arr[top] = 1;
                                printCodes(root->right, arr, top + 1);
                }

                // If this is a leaf node, then it contains one of the input
                // characters, print the character and its code from arr[]
                if (isLeaf(root))
                {
                                printf("%c: ", root->data);
                                printArr(arr, top);
                }
}

// The main function that builds a Huffman Tree and print codes by traversing
// the built Huffman Tree
void HuffmanCodes(char data[], int freq[], int size)
{
// Construct Huffman Tree
struct MinHeapNode* root = buildHuffmanTree(data, freq, size);

// Print Huffman codes using the Huffman tree built above
int arr[MAX_TREE_HT], top = 0;
printCodes(root, arr, top);
}

// Driver program to test above functions
int main()
{
                char arr[] = {'a', 'b', 'c', 'd', 'e', 'f'};
                int freq[] = {5, 9, 12, 13, 16, 45};
                int size = sizeof(arr)/sizeof(arr[0]);
                HuffmanCodes(arr, freq, size);
                return 0;
}

Output:




No comments:

Post a Comment